摘要
将基于PCA-Kmeans++的多属性融合聚类技术应用于沁水盆地南部3#煤层的储层预测中,对融合聚类属性进行分析,确定有利储层分布。首先提取常规的叠后地震属性、叠后波阻抗反演以及叠前AVO属性;然后利用PCA主成分分析方法,得到贡献率最大的几个主成分分量;最后通过Kmeans++无监督机器学习算法对主成分分量进行融合和聚类。实际资料应用结果表明,PCA-Kmeans++方法可以融合各个属性的特征,能够更加清晰地反映地质异常体的分布特征,为沁水盆地南部煤层气及类似储层的预测提供了一种可行的方法。
- 单位