摘要

为了优化交通仿真模型的参数标定方法,提高仿真模型的精度和还原真实道路环境,研究了同时考虑多个校正指标的仿真标定方法。以仿真结果为导向,通过敏感性分析确定面向应用需求的标定参数。在考虑不同校正指标相互影响的基础上,以不同时间区间下的误差变异性作为影响权重,构建考虑多个校正指标的仿真标定模型,建立了考虑6种速度的目标函数。基于VISSIM仿真软件的二次开发功能,结合MATLAB语言对模型进行了实现,以免疫遗传算法为基本求解方法,通过两阶段的熵权赋值与自适应调整确定143组参数结果。最后采用均匀取值、递归取值、指标耦合取值3种方式比较了不同取值方法之间的优劣性。仿真结果显示不同时间段主线小客车速度的误差平方值大于0.01的频数下降了50%,大型货车下降了60%;在车速方面,主线小客车现有误差5%,下降了7%,大型货车现有误差1.5%,下降了5.2%,小型货车与匝道车速误差均维持在6.5%左右;主线小客车速度与主线大型货车速度具有更小的权重值,维持在0.15~0.2范围,误差变异性更小,在目标函数中的作用更小。结果表明:相较单一指标的标定方法,基于指标耦合的标定方法考虑了多个指标之间的相互影响,同时综合考虑各指标的误差,克服了以往标定1个指标而导致其他指标误差过大的缺点。

  • 单位
    交通运输部公路科学研究所