摘要

深度卷积神经网络为图像超分辨率领域的快速发展做出了巨大的贡献。然而,一些算法基本上没有充分利用图像的低频信息,因此导致性能相对较低。为了解决上述问题,故提出了一种基于残差网络的双路径图像超分辨率重建算法,通过去除残差模块中的批归一化层以及引入通道注意力机制,同时将多尺度块MSB作为跳层并将自适应亚像素重建层作为上采样模块以更好地恢复图像细节信息。实验结果表明,该算法具有良好的性能,能增强图像的重建能力。

全文