摘要

标识工作是建立深度学习数据集的关键基础,对观测数据匮乏的冰雹等灾害性天气智能预报尤为重要。选取2008—2019年重庆地区灾情报告中有准确时间的13次降雹过程(分为参照集和验证集),利用模糊逻辑算法,建立基于地面实况的降雹风暴体客观标识方法。为获取冰雹与风暴体的合理匹配,选取风暴质心与降雹地点间距离、风暴最大反射率因子、45 dBZ反射率因子最大高度、最大垂直积分液态水含量、最大回波顶高作为判别因子。对于参照集,客观标识方法正确标识7次,其中有5次标识时间与灾情报告记录时间相差在6 min以内。对于验证集,算法标识正确率为100%。为了扩大检验范围,将算法用于无准确时间的22次降雹过程,并将结果与预报员人工标识结果进行比较后发现,二者往往标识的是同一风暴体。上述结果表明:该方法在时间信息模糊的情况下可进行标识。同时发现该方法不依赖于冰雹尺寸、发生时间及风暴体生命史长度,但对初始猜测位置、风暴体识别算法较为敏感。

  • 单位
    重庆市气象科学研究所; 重庆市气象台