摘要

针对网络视频质量低导致人脸检测准确率低的问题,提出一种基于人脸超分辨率重建的SR Face Detection模型。使用去掉自监督分支且以Resnet50为基础网络的RetinaFace进行帧图片人脸的粗提取;在人脸检测器后增加一个人脸超分辨率重建网络,剔除粗提取人脸中的非人脸。该超分网络的生成网络使用残差密集块进行特征提取,加入注意力损失和热图,更好地还原面部细节;根据实际需求设计一个多判别功能的判别网络。实验结果表明,SR Face Detection模型在WIDER FACE数据集上取得了令人信服的结果,提高了人脸检测准确率,且人脸检测场景越复杂,效果提升越明显。