摘要

为解决核主成分分析(KPCA)和支持向量机(SVM)融合算法分类精度差的问题,提出基于差空间融合特征选择的SVM算法。利用主成分分析(PCA)处理原始数据,得到差空间数据;分别对原数据和差空间数据进行KPCA,得到融合特征;用ReliefF算法得到对应特征的权重,根据初步分类评价指标选择最优的特征组合;对得到的数据利用SVM进行分类。该算法在UCI数据集上的测试结果表明,它能够有效提高分类精度,在高维数据中减小分类过程的计算复杂度。

全文