摘要
软集是一种处理不确定数据的理论、工具,通常用于决策论中。软集的参数约简是指删除对决策几乎没有影响的冗余参数,自从0-1线性规划算法提出以来,软集的参数约简问题基本得到了解决,但0-1线性规划算法实现复杂,需要依赖整数规划算法。在此,考虑软集的实际应用背景,将软集与概率论结合,设计出一个在大数据背景下的软集参数约简方法——方差辗转法,该算法的时间复杂度为O(m2n),而0-1线性规划通常视为NP难问题。方差辗转法实现简单,在物集(或全集)较小,不超过属性集大小的2倍时,效果较差,但随着物集(或全集)大小的增长,效率会逐步上升,最终运算效率会全面优于0-1线性规划算法的,对于约简稠密度高的软集效率会更高。
-
单位青海师范大学; 华北科技学院