摘要

针对在复杂环境下列车高速运行时,现有的Fuzzy-PID控制算法自适应性差在受到外界因素的干扰时会导致列车追踪误差较大的问题,提出了一种基于径向基(RBF)神经网络PID控制的列车速度控制算法。首先,在构建列车优化模型时,充分考虑列车经过电分相时必须处于惰行工况的特点,并且依据电分相和限速条件的特点将列车行驶过程中的区段进行了划分,简化了求解过程;然后使用RBF神经网络PID控制器对目标速度曲线进行追踪仿真,同时与现有的Fuzzy-PID控制器进行比较。实验结果表明,基于RBF神经网络PID控制算法能够实时有效的追踪目标速度曲线且追踪误差较小。

全文