摘要
电离层总电子含量(TEC)不仅是分析电离层形态的关键参数之一,同时为导航及定位等空间应用系统消除电离层附加时延提供重要支撑。由于电离层TEC的时空变化特征,本文融合因果卷积和长短时记忆网络,以太阳活动指数F10.7、地磁活动指数Dst和电离层TEC历史数据作为特征输入,构建深度学习模型,实现提前24 h预报电离层TEC。进一步利用2005-2013年连续9年的CODE TEC数据,全面评估了模型在北京站(40°N,115°E)、武汉站(30.53°N,114.36°E)和海口站(20.02°N,110.38°E)的预报性能。结果显示不同太阳活动条件下三个站的TEC值与真实测量值的相关系数都大于0.87,均方根误差大都集中在0~1TECU以内,且模型预报精度与纬度、太阳、地磁活动程度、季节变化相关。与仅由长短时记忆网络构成的预报模型相比,本实验模型均方根误差降低了15%,为电离层TEC预报模型的实际应用提供了参考。
-
单位江苏师范大学; 电子工程学院