摘要
为减少天气因素对短期电力负荷预测效果的影响,提高模型的预测精度,提出了一种基于天气分类和卷积神经网络的短期负荷预测模型。首先通过天气类型初分将原始数据样本集划分为晴天、阴天、多云和雨天4种类型。其次,为了识别相似气象条件,运用相关系数和k均值聚类方法,找到对新型负荷出力影响最大的气象因素,并对其聚类,选取高相似度的数据样本。之后根据特征选择的结果,构造神经网络输入数据集。最后,将该数据集输入至卷积神经网络训练并预测。通过算例验证分析所提模型具有更高的预测精度。
-
单位上海电力大学; 国网安徽省电力有限公司