摘要
考虑到下肢康复机器人很难获得精确、完整的数学模型,而且在建立模型时需要进行合理的近似处理,因此忽略了外部干扰、参数误差、未建模的动态和摩擦等不确定因素,这些原因导致控制性能不佳。基于此提出了一种基于计算力矩法的神经网络鲁棒控制器,通过计算力矩法对标称模型进行控制,RBF神经网络控制器对系统中未知的不确定项进行补偿,而自适应鲁棒控制器则用来补偿神经网络的逼近误差及外部的干扰,从而提高了系统的动态性能和控制精度,并对算法的稳定性进行了证明。通过实验验证,证明了控制算法的有效性,在被动训练时具有较好的轨迹跟踪性能。
-
单位机电工程学院; 哈尔滨工业大学