摘要

针对机械手动力学建模误差,提出了基于RBF神经网络误差补偿的自适应控制策略。在基于逆动力学的计算力矩控制方法的基础上,对系统输入与目标轨迹进行修正,设计了两种误差补偿自适应控制器。利用RBF神经网络对修正项在线自学习,并根据Lyapunov稳定性理论建立了网络权重自适应学习律,保证了跟踪误差的收敛及系统的稳定。以平面转动双臂机械手轨迹跟踪为例进行仿真,结果表明该方法能够有效地补偿建模误差,提高了系统的控制性能并使控制系统具有对参数摄动的鲁棒性,对于机械手自适应控制具有一定的可行性。

全文