摘要

杂乱环境中机器人推动与抓取技能自主学习问题被学者广泛研究,实现二者之间的协同是提升抓取效率的关键,本文提出一种基于生成对抗网络与模型泛化的深度强化学习算法GARL-DQN。首先,将生成对抗网络嵌入到传统DQN中,训练推动与抓取之间的协同进化;其次,将MDP中部分参数基于目标对象公式化,借鉴事后经验回放机制(HER)提高经验池样本利用率;然后,针对图像状态引入随机(卷积)神经网络来提高算法的泛化能力;最后,设计了12个测试场景,在抓取成功率与平均运动次数指标上与其他4种方法进行对比,在规则物块场景中两个指标分别为91.5%和3.406;在日常工具场景中两个指标分别为85.2%和8.6,验证了GARL-DQN算法在解决机器人推抓协同及模型泛化问题上的有效性。

全文