摘要

多重信号分类(MUSIC)时延估计算法需要多径数估计,且其特征分解和谱峰搜索的计算复杂度较高。针对此问题,给出了一种基于逼近噪声子空间的求根时延估计算法。该算法利用协方差矩阵逆的高次幂逼近噪声子空间与其自身共轭转置的积,并构造多项式等式,以多项式求根的方式避免谱峰搜索,从而降低了计算复杂度。仿真结果表明,在无需多径数估计和复杂度低于MUSIC算法的条件下,所提算法的性能与MUSIC算法的性能相当,并且逼近克拉美罗界。

  • 单位
    信息工程大学