摘要
为了克服基于像素的合成孔径雷达(synthetic aperture radar, SAR)图像阴影自动识别中图斑离散和精度低的问题,提出基于梯度-纹理特征超像素分割的SAR图像阴影自动识别方法。首先,提取SAR图像梯度和纹理特征;然后,综合SAR图像梯度和纹理特征进行主成分分析,再采用简单线性迭代聚类算法(SLIC)对前3个主成分合成的图像进行超像素分割;最后,以超像素为分析单元,采用恒虚警率(CFAR)检测算法识别SAR图像阴影。采用MSTAR图像数据集开展实验,并与“像素+CFAR”和“SAR图像超像素分割+CFAR”阴影识别方法进行定性和定量对比。对比实验显示,该方法识别阴影的MIoU值最高(0.882),Hausdorff距离最小(43.55)。实验结果表明,该方法不仅有效解决了SAR图像阴影识别图斑离散问题,而且识别阴影的准确度、识别的阴影边界与真实边界的符合程度均达到了较理想的效果。
- 单位