针对使用Conformer模型的语音识别算法在实际应用时设备算力不足及资源缺乏的问题,提出一种基于Conformer模型间隔剪枝和参数量化相结合的模型压缩方法。实验显示,使用该方法压缩后,模型的实时率(real time factor, RTF)达到0.107614,较基线模型的推理速度提升了16.2%,而识别准确率只下降了1.79%,并且模型大小也由原来的207.91MB下降到72.69MB。该方法在模型准确率损失很小的情况下,较大程度地提升了模型的适用性。