摘要

热舒适度指标的计算过程具有多参数、非线性、高复杂度等特点,致使空调的实时控制器无法直接使用。针对这一问题,提出了一种基于混合元启发式算法神经网络的热舒适度预测模型:GACS神经网络。其中,GACS算法是一类融合了遗传算法和布谷鸟搜索的混合元启发式算法。仿真实验表明:与遗传算法相比,GACS算法在全局搜索能力方面得到了极大提升,其优化出的GACS神经网络具有更高的预测精度。

  • 单位
    四川建筑职业技术学院