摘要

为有效应对海盗袭击事件,减少可能产生的损失,本文提出一种新的基于扩展置信规则库(EBRB)联合优化的海盗袭击事件风险预测模型。通过引入Relief F算法和差分进化算法,从结构和参数两个角度对EBRB系统进行优化,以确保EBRB系统具有最优的参数数量和取值,利用实际海盗事件数据集进行模型验证。结果显示,联合优化的EBRB系统预测结果与实际情况的拟合效果较好,相对于初始的EBRB系统,联合优化EBRB系统将海盗事件的风险预测准确性提高了60%。此外,与现有其他预测模型对比发现,基于联合优化EBRB系统的预测模型在提高预测准确性方面具有一定的优势。

全文