摘要

钻探孔内事故会造成严重的损失,若钻探设备能及时判断孔内事故类型,则可缩短事故处理时间,遏制事态发展。提出了一种基于神经网络的钻探事故类型判别模型。为了优选不同神经网络在事故类型判别时的正确率,在Matlab的nntool工具箱中分别构建了BP、RBF两种神经网络模型,将某矿区施工参数变化趋势作为输入参数,通过仿真试验发现,BP神经网络中表现最好的是LM、BR算法,RBF神经网络中表现最好的是PNN算法,三者准确率均可在90%以上,但BP神经网络容易陷入局部最优,性能不稳定,偶有判别错误的现象,而PNN神经网络无此局限,且不需要训练。通过对比,PNN算法更适用于事故类型判别模型建立。