摘要
针对远程自动抄表系统中字轮式表盘出现双半字符导致识别困难的问题,提出一种基于卷积神经网络(CNN)的双半字符识别方法。对采集到的表盘图像,首先通过图像预处理和投影算法分割出完整字符和双半字符。鉴于实际图像中双半字符样本较少,不足以训练深度网络,该方法通过收集相邻数字的完整字符图像进行对齐拼接,再从中随机截取子图像从而建立一个可用的双半字符训练集,并训练好专门设计的CNN模型。以燃气自动抄表系统读数为例,在生成的双半字符测试集和真实的双半字符测试集上进行实验,结果表明,与传统方法相比,本文方法有效提高了双半字符识别准确率。
- 单位