摘要
我国建立了包含海量数据的高质量的勘查地球化学数据库,为矿产勘查、环境评价和地质调查等提供了重要的数据支撑。如何高效处理勘查地球化学数据,并从中发掘和识别深层次信息一直是勘查地球化学学科研究的热点和前沿领域。本文在系统调研国内外学者过去十年发表的论著基础上,对勘查地球化学数据处理方法进行分析与对比,从勘查地球化学数据库建设、地球化学异常识别及其不确定性评价等方面概述了我国近十年来在该领域取得的主要研究进展,包括:(1)分形与多重分形模型由于考虑了地球化学空间模式的复杂性和尺度不变性,在全球范围内得到极大的发展和推广,我国学者引领了基于分形与多重分形的勘查地球化学数据处理;(2)机器学习和大数据思维开始在该领域启蒙,并迅速得到关注,正在成为研究热点和前沿领域,我国学者率先开展基于机器学习算法的勘查地球化学大数据挖掘研究;(3)我国学者需要进一步加强勘查地球化学数据缺失值处理以及成分数据闭合效应研究。今后该领域应进一步加强对弱缓地球化学异常识别、异常不确定性评价以及异常识别与其形成机理相结合等方面的研究。
-
单位地质过程与矿产资源国家重点实验室; 中国地质大学(武汉); 成都理工大学