摘要
海上浮式结构物运动响应的准确在线预报,对保障海上作业安全具有重要意义。本文基于长短期记忆(LSTM)神经网络模型,建立了浮式海洋平台运动响应极短期在线预报方法,可根据波浪时间序列信息对运动响应进行预报。通过半潜式平台模型试验得到大量波浪序列和运动响应数据,利用这些试验数据建立并训练LSTM模型,并对不同的测试工况进行运动预报和分析。结果表明,所建立的LSTM模型针对浮式海洋平台运动极短期在线预报具有较高的预报精度,预报提前量为12 s时,纵荡、垂荡和纵摇预报精度分别高于90%、93%和85%,且模型的计算效率高,每步计算时间为毫秒级,远小于预报提前时间,可以实现运动在线预报。
-
单位海洋工程国家重点实验室; 上海交通大学