针对传统电能质量扰动分类方法人工特征选择困难、准确率低的缺点,在传统卷积网络的基础上,借鉴Inception、残差的思想,结合混合池化和高效通道注意力机制,提出一种基于通道选择多尺度融合深度残差网络(CSSF-ResNet)的电能质量扰动识别方法。使用多尺度卷积提取不同尺度的特征,将全局混合池化与高效通道注意力机制相结合,在通道维度进行特征筛选,挖掘有效特征,并引入残差连接,构成CSSF-ResNet。仿真结果表明,所提方法具有分类准确率高、噪声鲁棒性强等优点。