摘要
针对基于单一关系路径的链路预测方法无法挖掘知识图谱中不同路径之间影响的问题,提出了一种基于多关系路径的链路预测方法。首先,采用基于路径信息的相似性指标来计算所有关系路径之间的相似度。然后,将不同路径之间的关系投影延伸至新的路径投影和路径约束,并采用随机梯度下降执行训练过程,从而能够在隐式空间中通过低维表示学习筛选出不同路径之间的显式特征。在安然邮件数据集和美国国家自然科学基金会数据集上进行了验证分析。实验结果表明,相比于其他多种路径链路预测算法,该算法在MAP和AUC指标上的最大提升幅度约20%,表现出更高的预测精度。
- 单位