摘要

多目标优化的两个核心指标是收敛性和多样性,而对二者加以优化和权衡是多目标进化算法的关键.头脑风暴优化算法作为一种新型的群体智能优化算法,一经提出便引起了众多研究者的关注.本文在对现有的多目标头脑风暴优化算法研究的基础上,通过对决策变量进行分析,围绕收敛性和多样性分别进行优化,在对收敛性优化时通过分解策略增加选择压力,而在对多样性优化时以参考点更新种群增加多样性,最终扩展并提出了高维多目标头脑风暴优化算法.此外,本文提出一种以角点为聚类中心的自适应聚类方式,明确个体的导向,提高种群的扩展性.与现有的几种效果较好的多目标进化算法进行比较,大量的仿真结果表明了本文的算法具有优秀的性能.