随着对能源利用效率要求的提高及日益激增的光伏数据,传统的光伏预测方法已逐渐丧失优势。为了更加准确地进行光伏预测,采用深度学习的框架,并利用循环神经网络(RNN)中最重要的一个结构——长短时记忆网络(LSTM)对时间序列的强大处理能力进行了智能算法建模。由于LSTM具有"遗忘"与"更新"功能,很好地解决了长序依赖问题,从而使光伏预测在精度上有了质的变化,预测速度也得到显著提升。