摘要
高分辨率遥感影像上细节信息繁杂、干扰物普遍存在,对其进行自动化道路识别与提取的相关研究仍处在探索阶段。在道路提取过程中引入矢量数据辅助,可解决初始信息获取的困难,得到可靠性较强的训练样本。为此,提出一种矢量数据辅助下的道路提取方法,能够筛选出矢量数据中包含的有效信息,引导实现对高分辨率遥感影像的道路自动提取。利用Mean-shift滤波对图像进行预处理后,首先从矢量数据获取候选种子点,并通过提炼同质区域的形状特征剔除错误候选点;然后,自动获取负样本点以进行朴素贝叶斯分类,并采用邻域质心投票算法从分类影像提取道路中心线;最后,结合像素跟踪与方向判断矢量化道路中心线,并提出一种基于矢量几何分析的断线连接与毛刺剔除方法,对提取结果进行信息修复与规整、优化。实验结果显示,该算法的提取质量达到80%以上,且具备较强的稳健性,能够适应具有不同道路辐射和分布特征的高分辨率遥感影像。
-
单位信息工程大学地理空间信息学院