摘要

针对非负矩阵分解方法对原始数据的单图约束导致的结果未知性大、满足需求单一,以及大多非负矩阵分解方法存在对噪声、离群点较敏感导致的稀疏度和鲁棒性较差等问题,提出基于L21范式的多图正则化非负矩阵分解方法。采用L21范式,提升分解结果的稀疏度和鲁棒性。构建多图约束的算法模型更好地保持数据的流形结构。构建目标函数并给出乘性迭代规则。通过在多个数据库上的实验表明,该方法在识别效果上有明显的提升。