摘要
引入具有详细数学表达的多小波——V-系统,利用V-系统的多分辨性和NSCT的多方向性,对红外和可见光图像进行多层次、多方向分解,各层次各方向采用不同的融合方案进行图像融合。首先对源图像进行多层V-分解,得到图像的轮廓信息和多层细节信息;接着用NSCT对V分解得到的轮廓信息再分解,得到相应的低频和高频系数,低频系数用基于稀疏表示的融合规则融合,高频系数用基于二维Log-Gabor能量的融合规则融合,将改进的脉冲耦合神经网络融合规则用于V分解得到的细节信息的融合;最后,经过相应的逆变换得到融合图像。本文算法从不同层面、不同方向对源图像分解,使得源图像的细节得到细致刻画,同时多种融合方案的结合,使得融合图像的细节信息更加清晰,对比度得到提高,客观指标也有显著提高。
- 单位