摘要
光催化太阳能转换被认为是解决日益严重的能源短缺和环境污染问题的有效途径。因此,探索一种具有优异光催化活性和良好循环性能的新型光催化剂对光催化技术的发展具有重要意义。Bi2WO6是最简单的Aurivillius型氧化物,是一种重要的n型半导体材料,具有优异的可见光响应光催化性能,有望应用于有机污染物的降解。然而,单组分Bi2WO6存在光生电子-空穴对复合效率高、可见光吸收能力不足等缺点,阻碍了其光催化性能的提高。将石墨烯、碳量子点、TiO2等其他材料与Bi2WO6复合,成为解决上述问题的一种有效办法。在众多选择中,石墨烯凭借优异的电化学性质而引起了极大的关注。石墨烯是一种由碳原子以sp2杂化轨道组成的呈六角型蜂巢晶格的新型二维纳米材料,具有优良的导电性和光学性能。当石墨烯与Bi2WO6复合后,带来的性能提升主要有:(1)其优异的电子传导能力促进了电荷转移,抑制了光生电子-空穴对的重组;(2)基于石墨烯具有大的π共轭体系和二维平面结构,具有共轭体系的小分子或高分子污染物可通过π-π相互作用很容易地吸附在石墨烯表面上,这有利于催化反应的发生与进行;(3)石墨烯优良的光学性能可增强复合材料的可见光吸收。目前,用来制备Bi2WO6/石墨烯复合材料的方法主要有:水热法、溶剂热法、超声波化学合成法等。水热法经济实用,应用最为广泛。溶剂热法因能够利用非水介质的一些特性完成许多在水溶液条件下无法进行的反应而广受青睐。超声波化学合成法凭借独特的声空化效应,在近些年的研究中崭露头角。本文以Bi2WO6/石墨烯复合材料的制备方法为分类依据,将其分为水热法、溶剂热法、超声波化学合成法及其他制备方法四类,逐一进行分析、介绍,简述了复合材料的光催化增强机制,概述了复合材料在光催化领域的具体应用,并对Bi2WO6/石墨烯复合材料的制备与应用进行了展望。
-
单位齐鲁工业大学; 潍坊科技学院