在对ADS-B数据的实际滤波过程中,观测值中的野值是影响滤波效果的重要因素。分析野值对滤波以及数据处理精度的影响,以"新息"为基础,将基于"当前"统计模型的卡尔曼滤波算法用于数据处理,通过对自适应Kalman滤波方法中增益矩阵的改进,提出野值辨识和剔除方法。仿真计算表明,该方法性能可靠,简单易行,可以有效地消除野值对滤波的不良影响,提高滤波的精度。