为提高分布式拒绝服务(Distributed Denial of Service,DDoS)攻击检出率,设计基于机器学习的无线网络DDoS攻击检测方法。首先,结合攻击时间序列构建无线网络DDoS攻击检测模型,利用深度学习设计无线网络DDoS攻击检测机制;其次,通过异常流量判断,对照相应的流表特征信息完成分类检测;最后,进行实验分析。实验结果表明,该方法的DDoS攻击检出率较低,优于对照组。