摘要

针对变电站故障推理和分析应用存在人工总结的规则不全面、总结难度大、干扰信号多、故障推理配置可重用性低,以及故障推理往往需要考虑输入信号的时序性等问题,而采用传统机器学习算法无法有效解决此问题,提出一种基于长短期记忆循环神经网络(LSTM-RNN)、自然语言处理技术的变电站智能故障推理方法。分析了故障推理的应用场景,介绍了智能故障推理方法的整体架构、关键技术,并通过实际数据的应用试验进行了测试,验证了不依赖人工规则的智能故障推理方法的可行性,在信号时序可以记忆的场景中LSTM-RNN比其他机器学习算法有更好的适用性。