参数选取问题一直是支持向量机研究的热点.虽然核校准(KTA)方法广泛应用于支持向量机参数优化问题中,但是它仍存在不足.以核矩阵为研究出发点,深入分析了采用核校准方法优化核参数对分类性能的影响,然后综合核校准方法和特征空间中样本集的分布提出了一种核校准改进方法.对比实验表明该算法是有效可行的.