摘要

采用Deeplab v3+语义分割网络模型开展了高精度地物分类研究,并与FCN、UNet、SegNet等网络模型对比分析,结果表明Deeplab v3+提取的耕地、植被、建筑用地、道路、水系等地物图斑,其分类总体精度与Kappa系数在各项指标上均优于FCN、UNet、SegNet。此外,Deeplab v3+在路网道路、建筑物等线性特征显著、形状或边界变化剧烈的地物目标上,对图像纹理及空间几何特征的识别,都具有更高的有效性和适用性。

全文