摘要
雷达组网系统跟踪目标时,观测数据与目标跟踪状态成严重非线性关系,难以用卡尔曼滤波最优估计方法,处理非高斯非线性系统滤波估计问题的粒子滤波算法容易产生粒子退化问题。因此,使用观测预测粒子滤波算法解决这个问题,该算法基于观测似然进行重要性采样,结合一步预测信息计算粒子权值,保证了采样粒子处于高观测似然区,并充分利用了一步预测信息。仿真验证表明,将观测预测粒子滤波算法应用于目标状态估计,避免了粒子退化,收敛快,估计精度高。
- 单位
雷达组网系统跟踪目标时,观测数据与目标跟踪状态成严重非线性关系,难以用卡尔曼滤波最优估计方法,处理非高斯非线性系统滤波估计问题的粒子滤波算法容易产生粒子退化问题。因此,使用观测预测粒子滤波算法解决这个问题,该算法基于观测似然进行重要性采样,结合一步预测信息计算粒子权值,保证了采样粒子处于高观测似然区,并充分利用了一步预测信息。仿真验证表明,将观测预测粒子滤波算法应用于目标状态估计,避免了粒子退化,收敛快,估计精度高。