摘要

提出一种基于双重匹配注意力网络的方法.先用动态匹配机制迭代综合获取全局观点信息,同时利用多维度匹配机制在不同特征空间上计算全局语义信息,然后交互式多路注意力机制通过两路注意力之间的交互计算对上述全局的观点与语义信息进行融合,最后与选项表示结合预测答案的观点倾向.在观点型阅读理解数据集ReCO和Dureader上面的实验表明,该方法相对于基准模型在准确率上提升了1.18%和0.84%,在加权宏F1上提升了1.16%和0.75%.