摘要
机器学习作为实现人工智能的主要手段,通过探索数据规律、建立预测模型来指导决策支持。在目前油气管道系统设备繁多、结构复杂、技术庞杂等背景下,引入机器学习是为了采用人工智能技术解决单纯依靠数学模型难以应对的问题,代替人工从事一些枯燥繁琐、危险程度较高的工作。结合油气管道系统各生产环节,重点阐述了深度学习、强化学习及迁移学习3类机器学习方法的应用研究进展,包括油气管道泄漏、多相流型识别、设备故障诊断及储罐目标检测等应用场景,构建了人工智能技术在油气管道系统的应用框架,指出深度学习、强化学习及迁移学习在该领域拥有较强的应用前景。最后,对机器学习在油气管道领域的应用进行了展望,以期为油气管道系统的智能化研究与发展提供参考。(图1,参43)
- 单位