摘要
目前,高准确率的语音识别需要在大规模语料库上进行学习才能获得,然而大规模语料库的构建成本较高,某些语言很难采集到充足的语料,因此,基于小规模语料库的语音识别已成为目前挑战性的研究问题.元学习是模仿人类利用已有经验快速学习新知识的机器学习方法,在机器视觉单样本学习任务中表现出明显的优势,已成为新的机器学习研究热点.将元学习应用于单样本语音识别是解决基于小规模语料库语音识别这一挑战性问题的有效途径,在TIMIT和佤语数据库上,开展了基于Reptile元学习算法的单样本孤立词语音识别研究.实验结果表明,该算法能有效地提升模型收敛速度与泛化精度,从而提升了模型的学习能力,说明元学习方法有助于解决小规模语料语音识别这一挑战性问题.
- 单位