摘要

针对雷达数据集中目标和杂波点迹的聚类不平衡问题,提出一种基于改进AdaBoost的密度峰值聚类法。介绍密度峰值聚类法的思想,基于不对称误分代价改进AdaBoost的误差函数,提高正类错分代价权重,将改进AdaBoost和密度峰值聚类结合,对由目标和杂波点迹组成的不平衡雷达数据集聚类。仿真实验结果表明,该算法在保证总体聚类性能的同时提高对正类的识别。