摘要

为了解决SiamRPN++单目标跟踪算法在目标被短时遮挡及外观剧烈变化时定位不准确的问题,提出基于双注意力机制的多分支孪生网络目标跟踪算法.采用具有轻量化主干网络的SiamRPN++为基础算法,结合轻量化的通道和空间注意力机制,提升跟踪过程中应对遮挡挑战时的抗干扰能力.新增上一帧模板分支,动态更新目标外观变化,利用三元组损失增强跟踪过程中前景与背景的判别能力.根据目标的移动速度进行局部扩大搜索,使目标被短时遮挡后仍可以及时、准确地跟踪到目标.实验结果表明,改进后的算法在OTB100数据集的成功率和精确度较原算法分别提高了2.4%和1.6%,平均中心位置误差降低了28.97个像素,平均重叠率提高了14.5%.