基于火焰成像和堆栈降噪自编码的燃烧工况识别

作者:韩哲哲; 段德智; 倪浩伟; 李金健; 刘煜东; 李健; 张彪; 许传龙*
来源:东南大学学报(自然科学版), 2020, 50(03): 537-544.

摘要

提出一种基于深度神经网络的燃烧监测方法.该方法利用具有深层结构的堆栈降噪自编码(SDAE)提取火焰图像特征,并将其输入到高斯过程分类器(GPC)中,从而识别燃烧工况.针对SDAE训练集中未出现的新燃烧工况,使用少量新工况的标签图像对GPC进行重新训练,即可扩大监测模型的识别范围.在重油燃烧试验装置上开展了试验研究,利用获得的火焰图像对SDAE-GPC网络进行模型训练以及性能测试.结果表明,所提出的监测方法对训练集所包含的燃烧工况具有99.3%的识别精度,对新工况具有98.2%的识别精度,且对图像噪声具有良好的鲁棒性,在燃烧工况识别中具有潜在的应用前景.