摘要
在工业过程监测中,传统的过程监测方法无法提取过程的动态信息,且进行特征选择时没有突出在线故障特征.针对此问题,提出基于在线加权慢特征分析(OWSFA)的故障检测算法.采用慢特征分析(SFA)算法提取过程的本质动态特征;基于正常数据估计出特征阈值,根据松弛系数挑选出在线特征中超过阈值的嫌疑故障特征;引入权重系数,进一步构造基于在线加权的嫌疑故障特征统计量.将提出的OWSFA算法在数值系统和Tennessee Eastman过程进行仿真验证,证实了所提算法的故障检测效果优于主成分分析和SFA算法.OWSFA算法根据故障信息,在线构造加权统计量,加强了动态故障特征在监测模型中的表达.
-
单位北京科技大学; 自动化学院