摘要

为了解决模糊支持向量机(FSVM)算法应用于全极化SAR影像分类而产生的聚类中心陷入局部过适应问题,本文提出了一种基于模糊分割理论结合RBF神经网络的全极化SAR影像分类方法。主要利用模糊聚类分割、极化分解、纹理特征提取等,构建待分类地物特征集,并通过SGE进行监督降维,采用降维后的待分类地物极化表征完成RBF分类器训练,实现全极化SAR影像监督分类。最终通过C波段Randsat-2全极化SAR数据进行实测检验,结果表明,该方法使得分类结果区域一致性增强,充分地保存了待分类地物细节信息。

  • 单位
    中国测绘科学研究院; 城市空间信息工程北京市重点实验室; 国家测绘产品质量检验测试中心; 辽宁工程技术大学