摘要
针对数据量复杂的视频监控场景下现有的异常行为检测模型对小目标异常行为的准确率不高、计算量复杂的问题,本文提出一种基于多尺度特征融合的轻量级异常行为检测模型。首先将YoloV4主干网络替换为MobileNet网络,有效减少模型的参数总量与计算量;其次在MobileNet的逆残差结构中嵌入自注意力机制加强获取全局语义信息的能力;接着使用自适应空间特征融合结构ASFF(Adaptively Spatial Feature Fusion)优化PANet(Path Aggregation Network)网络结构,使模型获得不同尺度特征数据的权重融合,进一步有效利用浅层特征和深层特征,提高对小尺度目标异常行为的检测精度。实验结果证明,文章提出的模型检测在小目标上平均精度均值达到了85.35%,更适合于视频监控场景下的异常行为检测。
- 单位