基于改进LSTM的电力负荷预测与成本感知优化策略研究

作者:张泽龙; 韦冬妮; 唐梦媛; 纪强; 杨燕
来源:电子设计工程, 2023, 31(21): 132-136.
DOI:10.14022/j.issn1674-6236.2023.21.027

摘要

针对企业用电负荷预测计算复杂且准确度较低的问题,提出了一种基于改进粒子群算法(IPSO)与随差遗忘长短期记忆时间网络(EFFG-LSTM)的电力负荷预测与成本感知优化方法。该模型针对传统LSTM模型超参数随机选取的缺陷,利用IPSO算法实现了超参数的自适应寻优。对于LSTM单元缺乏误差跟随能力、易出现梯度消失的问题,采用一种随差遗忘门结构使其能够跟踪上一时刻的预测误差,同时动态调整遗忘门参数,并使用ReLU作为LSTM单元的激活函数。通过仿真算例表明,所提IPSO-EFFG-LSTM相比于EFFG-LSTM及LSTM模型在电力负荷预测上具有更高的准确度,且平均误差仅为5.2%。

全文