摘要

海量的生物医学图像蕴含着丰富的信息,模式识别算法能够从中挖掘规律并指导生物医学基础研究和临床应用。近年来,模式识别和机器学习理论和实践不断完善,尤其是深度学习的广泛研究和应用,促使人工智能、模式识别与生物医学的交叉研究成为了当前的前沿热点,相关的生物医学图像研究有了突破式的进展。该文首先简述模式识别的常用算法,然后总结了这些算法应用于荧光显微图像、组织病理图像、医疗影像等多种图像中的挑战性和国内外研究现状,最后对几个潜在研究方向进行了分析和展望。