摘要

针对人脸检测场景趋于多样化和复杂化的特点,考虑到大量遮挡、低分辨率和失真引起的人脸检测困难问题,提出了一种基于改进快速区域卷积神经网络(FasterRCNN)的多尺度人脸检测网络。首先,基于数据增强产生大量样本,从而提高数据多样性。其次,基于视觉几何组(VGG-16)网络微调预训练模型,生成大量难负例挖掘(HNM)样本并执行多尺度再训练,从而提高模型鲁棒性。最后,将生成的检测边界框转换为椭圆,从而更紧密包围人脸区域。在试验环节,基于预先训练的VGG-16模型在HNM样本上进行训练与测试,确定最佳数据增强组合。所提网络识别准确率为93.38%,召回率为89.52%,F分数为91.65%。所提多尺度人脸检测网络可以有效应用于大量遮挡、低分辨率和失真图像,为小样本人脸检测发展提供了一定参考。

  • 单位
    上海工艺美术职业学院