摘要

特征选择是提高农作物分类精度的一个重要手段。本文基于时序Sentinel-2影像提取影像的波段特征、植被指数、纹理特征,以这三类特征构建分类特征集,使用随机森林算法对分类特征集进行特征选择和分类实验。根据分类混淆计算的研究区总体分类精度为92.5%,Kappa系数为0.904,高精度地提取了研究区内冬小麦、大蒜等主要冬季作物的种植信息,这表明随机森林算法在对特征降维的同时,也能保证较高的分类精度。