摘要

为了提高医学图像配准的鲁棒性、准确性和速度,本文提出一种结合加速鲁棒性特征(SURF)和改进的随机采样一致算法(RANSAC)的医学图像配准算法,首先提取图像上的SURF特征点,完成特征点初始匹配,然后用改进的RANSAC算法剔除误匹配点对,最后根据提纯后的匹配点对估计出两幅图像间的空间几何变换参数完成图像配准。实验结果表明,与传统的几种算法相比,在图像中含有噪声、灰度不均匀及初始变换范围比较大的情况下,该算法在达到良好配准精度的同时,具有较强的鲁棒性和更快的速度。